RL-TR-97-141
Final Technical Report
October 1997

HIGH PERFORMANCE
COMPUTING ENVIRONMENTS

Software Options, Inc.

Sponsored by
Advanced Research Projects Agency
ARPA Order No. A183

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19980217 499

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

Rome Laboratory DTIC QUALITY mrsemerag
Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-141 has been reviewed and is approved for publication.

£, o Al

DOUGLAS A. WHITE
Project Engineer

APPROVED:

FOR THE DIRECTOR: WM

JOHN S. GRANIERO, Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CB, 525 Brooks Rd, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

HIGH PERFORMANCE COMPUTING ENVIRONMENTS

Contractor: Software Options, Inc.

Contract Number: F30602-93-C-0185

Effective Date of Contract: 30 July 1993

Contract Expiration Date: 30 June 1996

Program Code Number: 5E20

Short Title of Work: High Performance Computing Environments
Period of Work Covered: Jul 93 — Jun 96

Principal Investigator: Michael Karr
Phone: (617) 497-5054
RL Project Engineer: Douglas White

Phone: (315) 330-2129
Approved for public release; distribution unlimited.
This research was supported by the Advanced Research Projects

Agency of the Department of Defense and was monitored by
Douglas White, RL/C3CB, 525 Brooks Rd, Rome, NY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

collection of infarmation, including suggestions for reducing this burden

1. AGENCY USE ONLY (Leave blank/ | 2. REPORT DATE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and rmaintaining the data needed, and completing and reviewing the callection of information. Send comments regarding this burden estimate or any other aspect of this

, to Washington Headquarters Services, Directorate for Information Operations and Reparts, 1215 Jefferson
Davis Highway, Suite 1204, Arington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503.

3. REPORT TYPE AND DATES COVERED

Oct 97

Final Jul 93 - Jun 96

4. TITLE AND SUBTITLE

HIGH PERFORMANCE COMPUTING ENVIRONMENTS

5. FUNDING NUMBERS

C - F30602-93-C-0185
PE - 62301E

6. AUTHORI(S)

Judy Townley and Michael Karr

PR - A183
TA - 00
WU- 0}

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Options, Inc.
22 Hilliard St.
Cambridge, MA 02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S] AND ADDRESS(ES]

Advanced Research Projects Agency
3701 Fairfax Drive
Arlington, VA 22203-1714

525 Brooks Rd

Rome Laboratory/C3CB

Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-141

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Douglas A. White, C3CB, 3

15-330-2129

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

NA

13. ABSTRACT (Maximum 200 wards]

performance on a given set of "typical” inputs.

This report describes research and development undertaken to develop an environment, consisting of compiler and
debugger, for developing software for high performance computers that is able to exploit information about the execution
of a program. In other words, this environment does more than merely optimize a program, it optimizes the program's

14, SUBJECT TERMS

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |1
OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED

Software development environments, parallel computer, compilation, debugging

9. SECURITY CLASSIFICATION

15. NUMBER 02F4PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT
OF ABSTRACT .

UNCLASSIFIED UL

Contents

Objectives and Goals

Approach

Distribution

General Information

When to Report a Bug

For the Experienced User
Pragmatics

Caveats

For GCC/GDB Cognoscenti Only

I AU W INN - -

1 Objectives and Goals

We begin with a quote from the section of the same name in the Statement of Work for the
Option:

The objective of this effort is to develop a system for debugging highly optimized
code. We propose to develop techniques whereby a user can debug an optimized
program and yet be oblivious to the optimizations and at the same time the
debugging technology places no constraints on allowable optimizations. The work
will develop a principled approach to the construction of such a system. It will further
demonstrate the validity of these principles and the practicality of such a system by
an implementation in the context of a state-of-the-art compiler/debugger pair.

We have succeeded in meeting these objectives. This report will provide an overview of what we
have done and how we have done it. The reader should keep in mind that the effort in this project
went into constructing an innovative, practical system, not into this report. Even the user
documentation is minimal because one of the objectives stated above is that the user be oblivious to
the capabilities we have provided.

2 Approach

We proposed to base our effort on the Gnu compiler/debugger pair of GCC and GDB. GCCisa
state-of-the-art compiler that incorporates all the classical optimizations, and GDB is a better-than-
most Unix debugger. GCC, even before our modifications, was capable of compiling for debugging
(the -g switch) independent of the optimization level. (Many compilers will compile for debugging
only when not optimizing.) However, the behavior of the debugger on programs compiled with
optimization can be confusing and misleading, and will sometimes not provide certain capabilities to
the user. Our goal here was to remedy this confusing, misleading, and missing behavior. The fact
that our goal was to get GDB to behave “normally” is the reason for minimal user documentation of
our improvements---GDB already has user documentation; our work simply makes GDB adhere
closer to that documentation.

Our plan was to consider two or three kinds of optimizations. Our resources were sufficient
for two, and we worked on the two optimizations in the order of priority that we originally suggested:
inlining and register allocation. The inline optimization is important because it both is one of the most
important in speeding up programs (particularly those written in C++) and most hinders ones ability
to debug (ordinarily, it is not possible to set a breakpoint in an inlined function). After inlining,
register allocation is the most troublesome with respect to debugging because it can hide the true
values of variables.

We proposed that part of our effort would be spend in restructuring GDB into a “top™ part
providing the interface and a “bottom” part providing the abstraction of a machine execution. Once
we came into close contact with the reality of GDB, we realized that this part of the proposal was

naive. In some ways, GDB is in need of such a restructuring. On the other hand. the effort would
be massive. This is not so much a criticism of GDB as it is paying respect to the fact that GDB can
debug programs on more target architectures, running on more hosts, using more symbol table
formats, providing more features, than any other debugger. A debugger necessarily lives close to the
operating system and close the hardware, and only by examining the code of GDB can one tully
appreciate the degree to which this entails living dangerously---it is full of work-arounds because of
operating system bugs, compiler bugs, hardware quirks, and the like.

So instead of restructuring GDB, we took the opposite tack and left the structure of GDB as
invariant as possible, inserting all our changes under conditional compilation switches (bracketed by
#i fdef/#endif constructs). We believe this will turn out to be a more pragmatic approach,
because the changes can then be distributed as part of standard GDB and their use at a particular site
is then an installation option. We provided two compilation switches, one for inlining (LNXI) and
another for register allocation (LNXR). Each of these switches applies both to GCC, where it
controls the output of what we call “linkage information”, and to GDB, which uses this linkage
information to hide the optimization from the user.

We have used the modified GCC to compile both itself and GDB, under various optimization
levels and for three targets. Further, the modified GDB passes the standard test suite. In fact, 1t
succeeds in a place that the test suite was expected to fail.

3 Distribution

We have announced the availability of this system to GCC and GDB interest groups. We are
releasing it as standard “patch” files based on the most recent released versions of GCC (2.7.2) and
GDB (4.16). It is available under the standard GNU license.

The subsections below are the notes that we distribute with the modifications to GCC and
GDB.

3.1 General Information

A modified GCC and GDB hide the effects of inline optimization and of register allocation. The basic
idea is that with these modifications, GDB behaves essentially the same whether or not GCC has
compiled a program with these optimizations turned on. Details follow on that “essentially the same”
means. Keep in mind that there is no change in the way that you use GDB; it just behaves better.
If you already know how these optimizations interfere with debugging, skip this paragraph.
The major problem with inlining is that setting breakpoints in an inlined function has no effect when
executing inlined instances of the function. A less negative, but potentially confusing, impact is that
you see no stack frames corresponding to invocations of the inlined functions---GDB presents only
those stack frames that correspond exactly to the physical stack in the “inferior”, i.e., the process
being debugged. Further, the values of arguments and results of inline functions are available only
erratically. The major problem with register allocation is that GDB will lie to you about the value of
a variable. This arises because several distinct variables may be assigned to the same register. Ask

for the value of any of the variables and GDB will simply tell you the value in that register, interpreted
as having the type of the variable. A further consequence of register allocation is that values defined
by the program are destroyed by execution of the program, and are thus unavailable to the GDB user.

GCC now works slightly differently with the -finline switch, which in the revised version
causes inlining whether or not you have specified ~O. Thus, it is now possible to perform inlining and
no other optimizations. Similarly, GCC now has a new -fregisters switch, which causes
optimized register allocation whether or not you have specified -O. The user may supply any subset
of the ~finline and the ~fregisters switches. The major pragmatic reason for the new
switch behavior is that it enables working on the optimizations in combination with each other and
in isolation from other optimizations.

A GDB user may now set a breakpoint in a function that has been inlined, and the program
will break in any of the instances where the function has been inlined. Further, when the user asks
to view the stack, GDB will supply artificial frames to indicate the source semantics (rather than the
target semantics) of function calls. Further, valuesin these frames will be available in the usual way.
Similarly, when a GDB user asks for the value of a variable which is not “current”, i.e., some other
value is stored in the variable’s location, GDB will indicate the non-currentness, either with a “?”
when printing the parameter list in a frame or by saying Value of “...” is unavailable
here. In particular, you will get this message when asking for the value of an uninitialized local.
Further, GDB will often rescue the values of variables destroyed by execution, thereby making them
available to the GDB user, who remains blithely unaware that without these modifications, GDB
would like about the values of these variables.

At present, these modifications are implemented only for the “stabs” debugging format (used
by BSD systems). Lamentably, they do not work with the ~gstabs switch available under some
systems (e.g., MIPS), because these systems encapsulate stabs in the ECOFF format in a non-
extensible way. It would not take much work to extend the encapsulation machinery to handle our
extensions to stabs, nor to provide the linkage information under other symbol table formats;
volunteers are welcome.

3.2 When to Report a Bug

The behavior of the modified GDB on programs compiled with or without the -finline and the
~fregisters switches is so close that a practical “correctness criterion” for the modifications can
be stated in terms of what differences can be observed. Users are encouraged to report violations of
the following behavior:

Compile a program with the modified GCC in three ways: with the -g switch only
(the “non-optimized” version), with the —g switch and any non-empty subset of the
-finline and -fregisters switches (the “optimized debugging” version) and
with no —g switch, and finally with the same non-empty subset of the -finline and
-fregisters switches (the “optimized non-debugging” version).

The machine code for the optimized debugging and optimized non-

3

debugging versions is identical. (Great care was taken not to modify GCC
to change code generation. Users are encouraged to be very diligent in
reporting any failures in this regard.)

Use the modified GDB on the non-optimized and optimized debugging versions of
the program, in the ordinary way. (There are neither added nor deleted GDB
commands.) Then the only detectable difference in the modified GDB’s behavior on
the two versions of the program arise as follows:

The machine addresses that GDB prints out may differ (because inlining
changes the size of code).

The break (a.k.a. b) command may print out a message Breakpoint
1 at Oxn,.... The, ... means that the inferior may break at one
of several pc’s, all corresponding to the same place in the source. 1f the
function is uncompiled (because it is an extern inline or because it
is totally inlined, either because it is a method in some C++ class or by the
use of ~03), n will be 0.

An uncompiled function cannot be used in expressions. (It is possible to
remove this restriction, by calling it from an inlined instance, but this is
tricky and not worth it now.) Similarly the disassemble and x
commands each give an error for uncompiled functions.

Some variables may print as “?” or cause the “unavailable” error, but only
in situations in which the variable has actually been overwritten with
another value, and sometimes, not even then (see next item). (If the
variable is “dead” but happens not to be overwritten, you will still be able
to examine it.) There are still some places where a parameter will
disappear entirely from GDB’s knowledge, but in all currently known
cases, this is due to some optimization other than the two considered, so
is outside the purview of the current project.

GDB will rescue the value of an about-to-be-clobbered variable in any
function which:

- has a breakpoint, or

- has been arrived at with a step, finish, or return command.
Call such functions “safe”. Once a safe function is entered, its variables
as well as the variables of all recursive activations will be rescued, even
upon removal of the breakpoint which caused the function to be safe.

The idea is that the variables of a function in which a user appears

interested are always available (once initialized). Pragmatics prohibit
making this guarantee for all the variables of the program. The above

rules seem a reasonable approximation of when a user is interested in a
function, and require no conscious effort or new GDB commands.
Counter-suggestions are welcome.

The use of machine-level GDB commands, e.g., stepi, will, in general.
result in different behavior (because a different machine language program
is being run). Similarly, “maintenance commands” (e.g., maint print
{ pm} symbols), which print out internal GDB data, will of course give
different results, and info address and info line behave slightly
differently in inline situations. Likewise, the value of $reg will vary
between the two versions.

The use of -finline and -fregisters in combination with other
optimizations does not have similar guarantee, but at the very least, GDB
will not crash.

3.3 For the Experienced User

Supporting the above criterion required modifications to the implementation of many GDB
commands. These notes are of interest only to the experienced GDB user, who knows about
behavior dependent on these optimizations. A naive user will see only the expected.

frame, up, down: these introduce frames that are in the source semantics but not
in the inferior’s physical stack; they are also responsible for the “?” indication of a
parameter’s unavailability.

break, delete, clear, info b: for setting, unsetting, and examining
breakpoints; the idea is that one source location may be mapped to many pc values.

step, next, cont, jump, until, return, finish: controlling execution in
the inferior; some of these are cute---for example, GDB may give the appearance of
entering or leaving a function without ever running the inferior (because a single pc
has an ambiguous interpretation of being just before or just after a function entry or
exit).

1list: for examining source text

info line: if the argument is an inline function, it does not give pc information,
but indicates its file and line; if the argument specifies a line within an inline function,
again, it does not give pc information, but indicates that it is an inline, possibly
uncompiled, function. (Well, on this one, maybe a naive user might not expect what
happens, but it’s pretty self-explanatory.)

info address: indicates an uncompiled function.
3.4 Pragmatics

The additional functionality of GDB comes at some expense in both compilation time and in object
file size. The GCC file final . c, about 146000 source bytes, has the following costs under the

modified and unmodified versions of the compiler:

modified original
time in parse 2.840000 2.970000
time in integration 0.000000 0.000000
time in Jjump 0.790000 0.810000
time in cse 3.660000 3.630000
time in loop 0.260000 0.250000
time in cseZ? 2.800000 2.710000
time in branch-probabilities 0.000000 0.000000
time in flow 0.490000 0.510000
time in combine 2.640000 2.640000
time in sched 0.790000 0.800000
time in local-alloc 0.690000 0.710000
time in global-alloc 0.660000 0.680000
time in sched2 0.450000 0.510000
time in dbranch 0.890000 0.880000
time in shorten-branch 0.130000 0.120000
time in stack-reg 0.000000 0.000000
time in final 1.160000 0.760000
time in varconst 0.130000 0.060000
time in dump 0.000000 0.000000
time in symout 0.160000 0.120000
total 18.540000 18.160000 (2.0% increase)

The size of the modified compiler’s output is 107301 bytes, an increase of 7.3% from the 99933 bytes
produced by the original compiler.

We have not done timing studies of GDB. Sometimes it seems slower than unmodified GDB,
particularly, perhaps, in functions which have a busy loop (where rescuing is happening) and a break
is set outside the loop. But for the most part, performance differences are imperceptible.

Although the intent of this project was to hide optimizations from the GDB user, a fallout is that
GDB informs the user when variables values are not available, regardless of the reason for the
unavailability. Thus, the modified GDB issues an error to a user who is trying to examine an
uninitialized variable (independent of optimization level). This has prevented confusion more than
once, and is worth the price of any added GDB expense.

3.5 Caveats

Although every attempt was made to do everything in a target-independent way in
both GCC and GDB, 1 have debugged GCC only on the SPARC, the MIPS (the
exercise for the latter target was the first stage in discovering that -gstabs
encapsulates stabs in ECOFF in a non-extensible way), and the 386, and GDB only
on the SPARC and 386. All of the development work was on the SPARC. Porting
GCC to the MIPS revealed one existing GCC bug and two from this project; porting
it to the 386 (the first non-RISC platform) revealed four minor nits. So porting to a
fourth target will probably reveal some problems, but nothing major.

The system has been used on both C and C++ programs, but much more on C than
C++. It has not been used at all on Modula-2, Ada, or Fortran. Judging from the
incremental effort to get C++ working after C was working (e.g., proper handling of
the this parameter required a new kind of information to be transmitted from GCC
to GDB), other languages will probably not work out-of-the-box, but neither will they
require much effort.

While combinations of -finline and ~fregisters have been extensively tested,
such testing was not done in combination with other optimizations. On the other

_ hand, this GDB was used to debug GCC compiled with -02, so it is not completely
unrobust.

The implementation assumes that a function begins and ends in the same file. This
restriction could be dropped, but requires a much more complicated internal data
structure, judged not worth it.

Behavior is currently not correct on inline functions with no code at all. This too can
be fixed, but in the absence of user requests, seems less important than other items on
the agenda. The priority might change if other optimizations frequently optimize
away the contents of inline functions.

Interaction with the catch command has not been tested.

The following comes from the Inline page under GCC inM-x info (cf. The above
discussion of the change to the ~finline switch):

GNU C does not inline any functions when not optimizing. It is not clear
whether it is better to inline or not, in this case, but we found that a
correct implementation when not optimizing was difficult. So we did the
easy thing, and turned it off.

The scary part is that in the experience of this project, a correct implementaiton when
not optimizing was not only easy. but in fact simply worked when tried. So who
knows what terrors lie in wait.

Even without trying it, the modifications are guaranteed not to work with threads.
The upgrade does not look difficult, but a threads package was not available for use

on this project.

3.6 For GCC/GDB Cognoscenti Only

This section gives a brief account of implementation issues.
There are five new kinds of “stab” directives:

N_INLINE: marks an instance of an inlined function, giving its name, where its
result is returned (in the string, following a “”, in the same way that places of
locals are specified), and the address at the end of its “prologue” (the instructions
that set up its arguments). The immediately following block (balancing
N_LBRAC/N_RBRAC directives) is the block for the inline instance. Formals
must appear for each inline instance because, in general, the formals are in
different places. They places of formals appear just before the N_INLINE
directive.

N_XINLINE: specifies an uncompiled function. The “X” is because the original
motivation was to handle extern inline, but later it was also found to be
required for an inlined C++ method that does not need to be compiled and from
use of the -03 switch. The entry gives its name, result type, and first and last
lines.

N_OK and N_NOK: these always follow the stab for a variable, and for a particular
variable, alternate. They indicate where the variable becomes available and
unavailable. There are two associated values, a delta and a label. If the delta is
0, the [un]availability arises from a control flow merge and begins immediately at
the label. Otherwise, the unavailability is caused by an instruction beginning at the
label and if the variable becomes available there, is available at or after the label
+ delta.

N_JUMP: these follow the stab for a function or for a variable. When such a stab
follows a variable, it indicates a jump where the variable needs to be rescued
(because flow leaves a place where the corect value for a variable is in its location
to a place where this guarantee does not hold.) The purpose of these stabs after
a function stab is not worth explaining here.

There is also a new “Symbol Descriptor”, O, which says that the variable is equal to the
current value of the frame pointer plus the value in the stab entry. It is now produced in
general, but has been encountered onlyh in connection with this parameters. which

necessitated its introduction.
GCC modifications:
The -finline switch now works as described above.
The -fregisters switch was added, and works as described above.
The definition of tree block has three new fields:

end prologue: gives the name of the label at the end of a prologue of an
inline function.

inline result: says where an inline result is.

variables regions: encodes where each of the variables of the block
is and is not available.

The inline flag of a tree_decl, previous unused for variables, now
means ok_on_entry, i.e., it is true for parameters of a function but not of local
variables.

CODE_LABEL rtx’s have three new fields: LABEL U LIST,

LABEL NOK LIST, and LABEL WAS OK LIST. " One of these overlaps with
an existing ﬁeld so these rtx’s are now two words longer. These rtx’s also have
a new flag, AFTER BARRIER, shared with the internal flag.

Most of the modifications to GCC have to do with setting up the above fields and

producing revised stab data from them. It was also necessary to be a bit more careful
with the data in the vars field, because these supply the formals for inlined instances.

GDB modifications:
The partial symtab data structure now has an inline names field to tell
it whether it is worth reading the full symtab to find out more about the uses of

an inline function (necessary when setting a breakpoint on an inline function).

The block data structure now incorporates the following fields:

inline function: tells whether a block corresponds to an instance of an
inline function, and names the function.

end prologue: label after arguments have been evaluated.
return aclass: address class for the function result.
return value: says where the result is found.

The symbol data structure now has:
aux_value.fun.{file,line}: fora function, says where it ends.
aux_value.fun.rescue_jumps: records N_JMP data for the function.
aux_value.ok_regions: for a variable, says where it is available.

The frame info data structure now has an inline_function field,
indicating the artificial frames mentioned earlier.

Additions to the breakpoint data structure:
num inline breaks and inline_breaks: these provide a list of all
of the addresses in addition to the (pre existing) address of the compiled
function. If the function is uncompiled, its address field is -1 (but prints as
0x0).

sym: gives the function in which the breakpoint appears.

frame inline_depth: when the frame field is non-null, this is the depth
of the conceptual inline frame relative to the physical frame in the inferior.

watchpoint frame inline depth: similar to the previous, but with
respect to watchpoint frame.

There are two new breakpoint types, bp_rescue and bp_abandon.

The enum address_class type has a new member: LOC_OFFSET,
corresponding to the O symbol descriptor in a stab.

The modifications to GDB are surprisingly large in number, but they all transact with
the above additional fields of data structures in more or less obvious ways.

10

DISTRIBUTICN

addresses

DOUGLAS a. WHITE
L/C3CR

525 3R3IKS RD.

RIME, NY 13441-4505

SOFTWARZ JPTIONS, INC.
22 HILLIARD STREET
CAM3RIDGE MA 02128

ROME LASORATORY/ZSUL
TECHWNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: OTIC-2CC

DEFENSE TECHNICAL INFDO CENTER
R725 JIHN J. KINGMAN ROAD, STE 239
FT. BELVOIR, VA 22050~5218

ADVANCED RESEARCH PROJECTS AGEZNCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RZLIABILITY ANALYSIS CSNTER
201 MILL 37.
RIME NY 13449-3200

RIM=Z LA3CRATDRY/C3A8
525 3R24KS RD
2IME NY 13441-4505

ATTN: ZAYMONG TAZR3S
GIDEP

Pale 37X 3000

TORONA CA 31713-RJ0D

44

1

numb2r
of copines

n
v

AFTT ACADEMIC LIBRARY/LD:=E

2950 P STREZET

AREAR By 2LDG 542

ARIGHT-PATTZRSON AFB CH 45433-7785

OL AL HSC/HRG, 3LusG. 190
2598 G STREET
WRTGHT-PATTZRSAON AF3 OH 45433-7504

US ARMY STRATSGIC ODEFENSE COMMAND
CSSD-IM-PA '

P.0. 80X 1500

HUNTSVILLE AL 35307-3301

COMMANDER, TECHNICAL LIZRARY
4747000/C0223
NMAVAIRWARCENWPNDIV

1 ADMINISTRATION CIRCLE
CHINA LAKE CA 33555-5{01

SPACZ & NAVAL WARFAREZ SYSTEMS
COMMAND (PMW 173-1)

2451 CRYSTAL DRIVE

ARLINGTON VA 22245-5200

COMMANDER, SPACZ 5 NAVAL WARFARE
SYSTE4S COMMAND (CODE 32)

2451 CRYSTAL ORIVE

ARLINGTAON VA 22245-5200

CoR, US ARMY HMISSILZ COMMAND
RQSICy TLDS. 4424
AMSMI-?0-CS-R, 03CS

RZDSTCME 4R3%NAL AL 35838-5241

AOVISGRY SROUP 3N ELECTRAON DEVICES
SUITE 309

1745 JSFSCRS5SON JAVIS HIGHWAY
ARLINGTY3IN va 22202

REPORT COLLECYION, CIC-14

MS P3Is4s

LOS ALAMTS WNATIOCNAL LABCRATCRY
L3S ALAMOS AM 27545

AEDC LIBRARY

TZCHNICAL REPORTS FILE

100 KINDEL JPIVE, SUITE C211
ARNOLD AF3 TN 3733%5-3211

COMMANDER

JSAISC

ASHC-IMD-L, 8LDG ©1801

FT HUACHULA AZ 85613-5000

JS DEZPT OF TRANSPORTATION LIBRARY
F310A, M—457, RM 330

300 TNDEPENDENCE AVE, SW

WASH DC 22591

AIR WEATHER SCRVICE TECHNICAL
LIBRARY (FL 4414)

359 BUCHANAN STREET

SCOTT AF3 IL 62225-511%

AFIAC/450
102 HALL BLVD, 3TE 315
SAN ANTONID TX 78243-7016

SOFTWARE ZNGINEZRING INSTITUTE
CARNEGIE MELLON UNIVERSITY
4500 FTIFTH AVZINUE

PITTSSURGH 24 15213

MSA/CSS
K1l
FT MEADE MR 20755-4000

DCMAD/HEICHITA/GKE?
SUITE 2-34
401 M MARKET LTRE
WICHITA XS 5 -

p

[d

PHILLIPS LABJORATARY

°L/TL (LIBRARY)

S WRIGHT STREET

HANSCOM AF2 ™MA 01731-3004

THE 4ITRE CORPORATION
ATTN: =. LADURE

0460

202 BURLINGTON RD
REDFORD MA 01732

JUSD(PI/DTSA/DUTD

ATTN: PATRICK Ge. SULLIVAN,

400D ARMY NAVY DRIVE
SUITE 300
ARLINGYON VA 22202

JR.

r~

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to

transition them into. systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

